Normal view MARC view ISBD view

Effect of hydrogen bonding and solvent polarity on the fluorescence quenching and dipole moment of 2-methoxypyridin-3-yl-3-boronic acid

By: Melavanki, Raveendra.
Contributor(s): Geethanjali, H. S | Thipperudrappa, J.
Publisher: New Delhi NISCAIR 2018Edition: Vol. 56(12), December.Description: 989-996.Subject(s): PHARMACEUTICSOnline resources: Click here In: Indian journal of pure & applied physics (IJPAP)Summary: Two photophysical properties namely, fluorescence quenching and dipole moment (both ground state and excited state) of 2-methoxypyridin-3-yl-3-boronic acid (2MPBA) have been investigated in alcohol environment using steady state fluorescence technique at 300 K. In quenching studies, a rare but not unusual observation; negative Stern-Volmer (S-V) deviation has been noticed. It has been explained using the concept of solute’s conformational changes in the ground state due to inter-molecular and intra-molecular hydrogen bonding in alcohol environment. The spectroscopic data has been processed using Lehrer equation and thereby Stern-Volmer constant (KSV) has been evaluated. It has been found to be above 100 for most of the solvents used. The data related to dipole moment has been examined using different solvent polarity functions. Theoretical calculation of dipole moment in the ground state has been done using Gaussian software. The general solute–solvent interactions and hydrogen bond interactions have been found to be operative. An appreciable red shift of about 25 nm in the emission spectra has been identified with the rise in solvent polarity and decrease in molar mass of alcohols. It confirms the π→π* transition as well as the possibility of intra-molecular charge transfer (ICT) character in the emitting singlet state of 2MPBA.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2018464
Total holds: 0

Two photophysical properties namely, fluorescence quenching and dipole moment (both ground state and excited state) of 2-methoxypyridin-3-yl-3-boronic acid (2MPBA) have been investigated in alcohol environment using steady state fluorescence technique at 300 K. In quenching studies, a rare but not unusual observation; negative Stern-Volmer (S-V) deviation has been noticed. It has been explained using the concept of solute’s conformational changes in the ground state due to inter-molecular and intra-molecular hydrogen bonding in alcohol environment. The spectroscopic data has been processed using Lehrer equation and thereby Stern-Volmer constant (KSV) has been evaluated. It has been found to be above 100 for most of the solvents used. The data related to dipole moment has been examined using different solvent polarity functions. Theoretical calculation of dipole moment in the ground state has been done using Gaussian software. The general solute–solvent interactions and hydrogen bond interactions have been found to be operative. An appreciable red shift of about 25 nm in the emission spectra has been identified with the rise in solvent polarity and decrease in molar mass of alcohols. It confirms the π→π* transition as well as the possibility of intra-molecular charge transfer (ICT) character in the emitting singlet state of 2MPBA.

There are no comments for this item.

Log in to your account to post a comment.
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha